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The solution to the steady problem of an inviscid jet emerging from a symmetric 
nozzle of slowly varying profile is sought as an asymptotic seriesin the wall slope. 
The expansion of the solution in the region near the nozzle lip is singular at 
infinity, so that a matched expansion technique is evolved to solve the problem. 
To the order to which the solution is obtained in the present paper, the jet 
contraction ratio is shown to be the same as that from a nozzle formed by two 
inclined planes with inclination angle the same as the exit slope of the nozzle. 
Composite expansions are formed and used to check the consistency of expansion 
and matching procedures. 

I. Introduction 
The calculation of the plane jet flows of an incompressible fluid by conformal 

mapping methods has become an established technique of fluid mechanics. 
Results of such calculations, however, are seldom available in explicit or readily 
useful form. Despite +he existence of the ‘exact’ theories, there appears to 
still be a need for efficient approximate methods, even in plane jet flow calcula- 
tions. The purpose of the present paper is to show how the currently popular 
method of matched asymptotic expansions can be applied to this class of prob- 
lems, in particular how the matching principle of Van Dyke (1964) can be used 
to find a uniformly valid asymptotic solution for the jet emission from a varying 
nozzle having a small wall slope. The contraction coefficient will be calculated to 
O(E)  ( E  = measure of wall slope), and hence we shall see that to this order the 
contraction is the same as that from a nozzle formed by two inclined planes. 
Once we have the machinery of the matched expansion method it is possible to 
construct composite expansions, and in the relatively simple problem considered 
the consistency check advocated by Fraenkel(l969) can be employed to show that 
the composite expression uniformly satisfies all the conditions of the problem. 

2. Formulation and outer expansions 
For our demonstration of how matched expansion methods apply to jet flows 

we consider the configuration depicted in figure 1. Inviscid incompressible flow 
with speed Ud enters the nozzle at X = - co (the nozzle shape is asymptotic to 
a parallel section of half-width H as X -+ -00). The symmetric nozzle shape 
varies over a length scale L, hence the nozzle profile has the form Y = Hh(X/L) .  
The nozzle slope is (H/L)h‘(X/L), and h’ is assumed to be O(1). The shape 
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FIGURE 1. Strip-like flow domain. 

parameter e = H / L  is chosen as the perturbation expansion parameter. The nozzle 
width is assumed to be monotonically decreasing or if it is increasing the rate of 
increase is such that the flow does not separate from the nozzle walls. The jet 
exits at  point E and contracts as X 3 +co (point I ) ,  where the half-width 
attains its asymptotic value g I ( E )  H ,  i.e. the final half-width depends on the para- 
meter E ,  g, being an unknown function of e. For convenience we represent the 
nozzle shape and jet free surface by the function 

Y = HK(X,s) ,  

K(X < 0) = h ( X / L )  

K(X 2 0) = g(X/H,s ) .  

where 

and 

The function h (nozzle shape) is given, but the free surface y must be found as 
part of the solution procedure. The functional form assumed for g, i.e. use of the 
variable X I H ,  is chosen because t,he free-surface shape is expected to vary on the 
length scale of the nozzle width. 

We first formulate the problem in non-dimensional ‘outer’ variables appro- 
priate to the region bounded away from E. The outer variables will be seen to 
lead to the so-called hydraulic approximation appropriate to the ‘slowly varying’ 
nozzle profile. The requirement that the boundary curve be a streamline leads 
to the conclusion that V / U  = O ( E )  (V being the velocity in the Y direction). 
Thus, if velocities are scaled with the entrance velocity U,, the outer variables are 

X = X / L ,  jj = Y / H ,  

and 

where 3 is the outer velocity potential, $ the outer stream function and P(Z) is 
the complex velocity potential. Prom these definitions 

- 
F’(2) = q = Z-iE8, 

where is the complex velocity. 
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The problem is to  find the free boundary g(Z/e,e) and the complex velocity 
?(if; E ) ,  the latter being analytic in the strip 

(2: --oo < z < +m,o < 5 < & ( Z , B ) }  

and satisfying the conditions 

(2.1) 
- q(Z;e)  = [l-ish'(x)]G on Z = Z+ieh(x), 3 -= 0, 

also 

( 2 . 2 4  

(2 .2b)  
on X = Z + ieg(Z/e, B ) ,  

q(x; 6 )  = [i -iEdg/dx]zL 

IijP = I%(4l2 = Jgr(")J-2 

and a = O(1) as X 3 ieh(0) = iehE (the point E ) .  (2.6) 

Two conditions (2.2a, b )  are required on the free surface because g must be deter- 
mined. The final jet velocity and jet width ur(e) and g,(c) are also unknown but 
related by the continuity condition. Also we tentatively assume (later calcula- 
tion will show this to hold) that 

lim g(Z/s, e )  = g,(s) + O(e-xa'e), 
E-+O,5>0 

where (x > 0 is a constant. The outer limit is defined as 

lim q(X; E )  = $ O ) ( X )  
z fixed, 151 > 0 

and for notational convenience we shall adopt the outer partial expansion opera- 
tor (see Fraenkel 1969) 

In  the present problem the expansion is only carried out to O(E)  and it is clear, 
at  least to this order, that the power-series form in e is the choice that permits 
matching. The complex velocity ij is thus 

E1ij(Z; E )  = ij'o)+Eqq'l'. 

Eilg = $0) + qa"', 

plus terms 0 ( e 2 ) .  Inserting Z = X + i ~ q  and expanding, we find 

Expanding the boundary condition on jj = L(Z, E )  and equating terms shows that 

(@O))' = (hip)' = 0, z < 0, 

and (gy)q'o))f = (gyij(1))r = 0, z > 0, 

where g1(.5) = gy + Egp + . . . . 
5-2 
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At this stage in the calculation the gp) are not known. The boundary condition at  
0, that ii-+ 1, however, allows one completely to determine $O) and ij(l) for 
5 < 0, thus 

i j (2)  = l/h(X) + 0(€2), x < 0, (2.8) 

and 

The outer expansion for q(X) (x > 0) was determined by using the fact that 
- 
u, = (g?) +€gy)-' + O(E2) .  

The expansions for x < 0 and X > 0 can not be matched, hence the constants 
gf') and g(T) must be determined by matching with an inner expansion. 

3. Inner region and matching 

reason to expect V/U = O ( E ) .  Therefore, we define the inner variables as 

x = Z/€, y = y, 2 = Z/€ = x + i y ,  

u = u ,  V = E E ,  #=$, $=$, 

The length scale in the inner region is H and in the nozzle exit region there is no 

F = #+$ = P ,  F' = eq = ~ ( u - i ~ ) .  

The inner partial expansion operator is defined as E,p = q@)+ @), and 

q = q'0) + eq(Q + O( €2). 

(2: -03 < x < +co, 0 < y < @Ex; 8)) 

are q = [l-i&'(ex)]u on z = z+ih(ex), x < 0, (3.1) 

The conditions for the inner problem on the boundary of the strip domain 

(3.2a) 

(3.2 b)  
on z = x+ig(x ,s ) ,  x > 0, 

q = [l-idg/dx]u 

1qI2 = 4 4 ,  
v = O  on z = x  (3 -3 )  

and ' \ q 1 2 =  O(I) as x-tih, .  (3 .4)  

Conditions for 1x1 -+ co are found from the requirement that the inner expansion 
match with the outer along the real axis. Straightforward substitution of the 
expansion E l q  into the above conditions leads to the result that 

q ( O )  = constant - 

and $1) must satisfy the requirements 

v(l) = h&/h,, where h& = h'(O), on z = x+ihB, x c 0, (3.5) 

( 3 . 6 ~ )  

(3 .6b)  

w(l) = 0 on z = x. (3 .7)  
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FIGURE 2. Flow boundaries and boundary conditions for first-order 
inner problem in physical and hodograrh planes. 

The constant u$) must be found by matching with the outer solution for Z < 0. 
The problem for q(1), as defined above, is solved by noting that q(l) is the mapping 
of the strip { z :  - co < x < co, 0 < y < hE) into the region of the q(l)plane indicated 
in figure 2. This gives the result that 

(3.8) @) = Up)- ih’,/hE f [2h&/(ThE)] c0sh-l [i exp ( - TZ/2&) ] .  

If we attempt to find uy) by letting x +-co in (3.8), we find that = O(lx l ) ,  
i.e. the solution is not uniformly valid. Instead, we use the matching rule, advo- 
cated by Van Dyke (1964, p. go), that (in the notation of Fraenkel 1969) 

(EIE1- &El) q = 0 

with z = x and x < 0. This gives in a straightforward manner 

(3.9) 

(3.10) 

It turns out that in this problem the inner expansion is uniformly valid for all 
Z > 0, hence the outer expansion 4 is not needed for Z > 0. Even so, we match for 

fJp) = hE (3.11) 2 > 0 to obtain 

and gp’ = (2 log 2/77) hE hk. (3.12) 

The latter result permits us to find the contraction ratio C to O(s), thus 

h,+€gy+ ... 2 log 2 
C =  = l+€h&-- 7s + 0(€2). (3.13) 

The inner complex velocity can be decomposed into real and imaginary parts to  
get expressions for u(1) and VCQ. Evaluating dl) for x > 0 on y = hB and using con- 
dition (3.6a) shows that 

(3.14) 
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This can be integrated in terms of the dilogarithm function (Abramowitz & 
Stegun 1965, p. 1004), however, for the present purpose, asymptotic expressions 
for large and small x are more useful thus we find that 

g@) = [(2/n) log 21 hk h, + O(e--nz'hE) as x --f 03 (3.15) 

and (3.16) 

The result for x --t co shows that (3.14) is consistent with (2.7); the result for 
x -+ 0 shows that the free surface is tangential to the nozzle edge. 

4. Composite expansions 
One strong advantage of using the matched asymptotic expansion formalism 

is the ease with which composite expansions can be constructed. To carry out 
this procedure for the present example, we use the additive rule of Van Dyke 
(1964, p. 95), i.e. 

In constructing a composite expansion by this rule we are forced to take account 
of the fact that there are three regions where expansions of Poincar6 form apply. 
These are the outer region with x < 0, the inner region -he < x < co and the 
outer region he < 53 (where h is an arbitrary positive constant). It is true that the 
inner expansion is uniformly valid for the outer region with x > As, however, 
when we use the additive composition rule on the inner expansion and the outer 
expansion for X < -hey the resulting expansion will not be valid in the outer 
region for 5 > he. This can also be seen by noting that El E,q = E,  Elq  depends 
on the sign of x (where we use h to order E in the expression for 4). Therefore, the 
additive rule will give us two composite expansions, one valid for x < he and 
the other (which is simply the inner expansion) valid for x > -As. Thus for 
x < 0 we have the composite expansion 

exp ( - 7rz/2hE) + [ 1 + exp ( - 7rz/hE)]S 
2 

(4.2) 
and for x > - A s  we have 

exp ( - 7rx/2hE) + [ 1 + exp ( - 7rx/hE)]k 
2 

The improvement gained by the composite expansion is that it is valid in the 
nozzle and the nozzle exit region ; the second composite expansion (for the reasons 
stated above) is the inner solution. We have not been able to find a composite 
expansion for q that is uniformly valid in all three domains and which maintains 
the required analyticity requirement. 

Most problems solved by the method of matched asymptotic expansions 
are too complicated to permit the consistency check (suggested by Fraenkel) 
of inserting the composite expansion into the equations and boundary con- 
ditions and verifying that all conditions are satisfied uniformly to a given order. 
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The present problem is one in which conditions are simple enough to carry out 
this calculation. The condition that q, be a harmonic function is identically 
satisfied, as are the conditions that v, = 0 on y = 0, u, -+ 1 as x +- - 00, u, -+ con- 
stant as x -++m and lq,l = O(1) as z -+ ih,. The conditions (2.1) and (2.2) still 
remain to be checked, and after a simple though tedious calculation we find 

IvC/uc-eh'(~)] = O[GV(h"-h'2/h)] on y = h ( ~ ) ,  z < 0, 

and 

on y = h,+cg(l)(x), x > 0. 

The terms multiplying €2 in the order estimates are bounded for all x in the 
appropriate regions, establishing the consistency of the procedure. 

5. Discussion 
Another check on the asymptotic solution can be obtained by comparison with 

available exact and numerical solutions. A well-known exact result (Gilbarg 
1960) exists for the jet flow from a nozzle formed by two inclined planes. For this 
case the exact contraction ratio is given by 

C-1 = 2 - n-1 sin [gar (f( 4 + $a) - f ($a) - 2/01)], (5.1) 

where f is the dilogarithm and a7r is the angle between the plates. This result can 
be expanded for small CI to give 

c = 1 - alog 2 + O(a2). 

If one notes that our E = tan ($an) and hk = - 1, it can be seen that to O(E) our 
result agrees with the exact expression. 

It would be of considerable interest to compare our results with solutions for 
jets from symmetric curved nozzles. Unfortunately, such solutions, which also 
satisfy the small 6 assumption, are difficult to find. Larock (1969) obtained quasi- 
numerical solutions but his wall slopes in our inner region are highly variable. 
Thus, for a nozzle with a 46' lip he obtains C = 0.7242, while our formula gives 

N. S. Clarke (private communication) has derived a general expression for the 
contraction ratio of a nozzle which he can evalulate asymptotically under 
several circumstances, one of which is a slowly varying sinusoidal nozzle. In  this 
case our results agree. He is also able to evaluate profiles with several sharp dis- 
continuities, which lead to different results. The present paper treated a case 
with only one region where the 'slowly varying' assumption that motivated the 
outer or hydraulic expansion broke down, that being the exit region. Clarke 
has shown that when other places where the assumptions break down occur, 

C = 0.55. 
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i.e. when there are nozzle shape variations at the exit on the scale of the nozzle 
width, one obtains different values of the contraction ratio. One expects that these 
difficulties could be treated by the introduction of appropriate new inner regions 
to handle the breakdown of the outer expansion at  these points. The main point 
of the above was to demonstrate how at least one region (the exit) could be 
treated by introduction of inner variables and use of a matching principle. 

In  conclusion, we see that matched expansion techniques are applicable in a 
reasonably simple way to classical jet flow problems. The ultimate utility of the 
method still remains to be proved, e.g. can the technique be of assistance in 
understanding time-dependent or axisymmetric flows? 

The author would like to thank Dr Inge Ryhming of Institut CERAC for his 
valuable assistance, Institut CERAC for suppork of the work, a J.F.M. reviewer 
for his careful reading and suggested revisions of the first version of this paper and 
Dr N. S. Clarke for his interest and valuable comments pertaining t o  the contrac- 
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